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Abstract The basic representation of AY’ is studied. 6 e  weight vectors are represented in 
terms of Schur functions. A suitable base of any weight space is given. The Litllewood- 
Richardson rule appears in the B n w  relations among weigh vectors. 

The aim of this letter is to give an explicit expression for the weight vectors of the basic 
Ay)-module realized on the polynomial ring of infinitely many variables. 

In 1978, Lepowsky and Wllson 151 constructed the basic representation of the affine 
Lie algebra A y )  by making use of the vertex operator. This construction was generalized 
to other types of affine Lie algebras [4] and applied to a study of nonlinear integrable 
differential equations such as KP, BKP and KdV hierarchies 111. Roughly speaking, weighted 
homogeneous polynomial solutions (7-fu~ictions) of these hierarchies are weight vectors 
whose weights lie on the Weyl group orbit through the highest weight, namely the maximal 
weights. 7hey are expressed by means of the Schur functions or the Schur @functions, 
reflecting that the formal solutions constitute an infinite-dimensional Grassmann manifold 
or its submanifold. 

In this letter we show that the weight space of any weight of the basic Ar’-module is 
spanned by 2-reduced Schur functions. We will choose a suitable base of any weight space 
and discuss the linear relations among the weight vectors. To our surprise. the Littlewood- 
Richardson rule [2,6] appears in the linear relations. The formula obtained can also be. 
viewed as an identity for 2-modular characters of the symmetric group. 

Review of the basic Ay’-module 

We first review some ingredients of a realization of the basic Ay)-module [3,5]. Let g = AI1’ 
be the affine~Lie algebra comespondjng to the Cartan matrix (2’ ;’) with the standard 
Chevalley generators {eo, e l ,  fo, fi, LY:,LY~}. The basic representation of g is realized on 
the space of polynomials of infinitely many variables 

v = C:[t], 13, ts, ... ] 
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as follows. Then 
(a j ( j  E Z, odd), I d )  span the infinite-dimensional Heisenberg algebra acting on V, which 
is a subalgebra of g. The action of g is constructed by the so-called vertex operator. Let p 
be an indeterminate and put 

For any odd natural number j ,  let aj = $ and a-j = j t j .  

The vertex operator is defined by 

x ( ~ )  = -;ez(r.p) ,-~(B.P- ' )  . 

Expanding X ( p )  as a formal power series of p and p-I: 

we have differential operators Xp (k E Z) acting on V. It is proved 151 that operators uj 
( j  E Z. odd), X k ( k  E Z) and identity constitute the affine Lie algebra g = AY), namely 
the basic representation of g. This is the irreducible highest weight g-module with highest 
weight Ao, where &(ai) = 1, Ao(u;) = 0. Let 010 and LY, be the simple roots of g, and 
6 = a ~ + a ,  he the fundamental imaginary root. It is well known [3] that the set of weights 
P of the basic g-module is given by 

P = {AQ +q8 f p a l ;  p . 4  E Z,q < - p 2 ) .  

A weight A on the parabola q = -p2 is said to be maximal in the sense that A + 8 is no 
longer a weight. Maximal weights consist of a single Weyl group orbit. For a maximal 
weight A the weight vector is expressed by the Schur function. For any Young dia,yam Y 
of N cells, the Schur function indexed by Y is defined by 

where x y ( v )  is the character value of the irreducible representation Y of the symmetric 
group BN, evaluated at the conjugacy class of the cycle type v = (1y12y. .. NUN) [6]. The 
Schur function Sy(t) is obviously a weighted homogeneous (degrj = j )  polynomial of 
degree IYI. For a non-negative integer r let KI = (r ,  r - 1, r -~2, .  . . ,2,1) be the staircase 
Young diagram of length r .  In the terminology of modular representations of the symmetric 
group, Kr are called 2-cores since they do not have 2-hooks [PI. We remark that the Schur 
functions Sx,(r) (r = 0, 1.2, .~. .) do not depend on f2j ( j  = 1,2,. . .), namely elements 
of V, because of the Mumaghan-Nakayama formula [Z]. The maximal weight vectors are 
SK,(I) for r = 0, 1.2,. . . [l]. We denote by A, the maximal weight whose weight vector 
is Sx,(t). According to the theory of hierarchies of nonlinear integrable systems, these 
maximal weight vectors exhaust the weighted homogeneous polynomial r-functions of the 
KdV hierarchy [I]. 
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The subspace of V consisting of weighted homogeneous polynomials of degree n has 
dimension podd(n), the number of partitions of n into odd positive integers. If we put 
@(q)  = nj>](1 -qi) ,  the generating function is 

Let p(n)  be the weight multiplicity of the weight A - nS for a maximal weight A, 
which is independent of the choice of the maximal weight, since the Weyl group preserves 
the weight multiplicity. It is obvious that degree of a maximal weight vector is of the form 
2m2 + m (m E Z). Therefore, by using an identity of Gauss [3,p241], we see that 

and hence p(n)  = p ( n ) ,  the number of partitions of n into positive integers. 

Bases for weight spaces 

We define the 2-quotient for a given Young diagram 12.81. Let Y = (yr, . . . , yn)  
(yl > . . . > yn > 0) be a Young dia-gam. We always assume n to be even. Consider the 
'Maya diagram' or the 'p-set' X = ( x I ,  . . . , x n )  where xj = y j  + (n - j )  for 1 < j < n. 
For i =0, r let 

x") = E M; 2$(') + i = x j  for some j }  . 

If we have Xci) = 
diagram Y(') by 

( i ) ,  . . . ,$") mlPl 1 (.$I > . . . 5 $,$) > 0), then we define the Young 

y(i) = ( f : )  - ( m ( i )  - I), @ - (,(O - z), . , . ~ ( i )  ) . 

The pair (Y(') ,  Ycl)) of Young diagrams is called the 2-quotient of Y .  The 2-core of 
Y is described as follows. If IX(O)j - IX(')I  = r > 1, then the 2-core of Y is K,-1 
and if IX( ' ) l  - IX(O)I = r 0, then it is K,. In this fashion we can attach a triplet 
(K; Y ' O ) ,  Ycl))  of Young diagrams for any Young diagram Y. where K is the 2-core of 
Y and (Y(O), Y ( l ) )  is the 2-quotient of Y .  It is easily shown that this comespondence is 
one-to-one and IYI = 2(lY(o)l + IY(')I) + IRI. Denote by r ( Y )  the triplet ( K ;  Y('), Y ( ' ) )  
corresponding to Y .  

Example 

Y = (4,3, 1') X = (7,5,2,1)' 
x" = (1) 
Y" = (1) 
K = Kz = (2, 1) .  

x'" = (3,2,0) 
Y ( l )  = (12,O) 

We now describe the weight vectors of the basic Ay'-module by means of the Schur 
functions. To this end we denote by SFd(r) E V the 2-reduced Schur function indexed by 
Y, which is by definition, 

Su"d(') = Sy(t)Jz2*= ...d. 
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By using the boson-fermion correspondence established by Date et al [l], we can see the 
following. 

Pmposition 1. The 2-reduced Schur function q d ( z )  is a weight vector of weight A, - n6 
if s(Y) = (&; Y(O), Y( ' ) )  with IY(O)I + lY(')l = n. 

As we have seen before, the multiplicity of each weight is expressed by the number 
of partitions for any maximal weight A,, i.e. mult(A, - n6) = p(n). Hence the weight 
vectors found above satisfy linear relations in general. For example, the Young dia-gams 
(4), (3, l), (ZZ), (2, l2), (14) determine the 2-reduced Schur functions of the same weight 
A0 - 26 whose multiplicity equals p(2) = 2. It can easily be checked that 

sg(f)  = s$)(t) &f: f f l f3  
1 4  sg:l)(s = S&(t) = it, 

s$)(t) = ~ ; ! ~ > ) ( t )  -SE;@) = hz; - t ,r3.  

Therefore the next problem is to fincl a suitable base for each weight space. The following 
theorem gives an answer. 

Theorem 2. The 2-reduced Schur functions 

(SFd(t); z ( Y )  = ( K r ;  4,  Y(')) with IY")I = n) 

are linearly independent and hence constitute a base for the weight space of weight A, -n8. 

Any weight vector SFd(r) can be expressed uniquely as a linear combination of the base 
vectors obtained above. We now focus on the coefficients of these expressions. Suppose 
that the Young diagram Y corresponds to the triplet r (Y)  = (K; Yco),  Y( I ) ) .  The 2-sign 
&(K; Yt0),  Ycl)) is defined as follows. If the 2-core K is obtained from Y by removing a 
sequence of 2-hooks, where q of them are column 2-hooks and the others are row 2-hooks, 
then 

&(K; YCO), Y ( ' ) )  = (-1)q 

It can be proved that b ( K ;  YcO) .  Yc')) does not depend on the choice of shooks being 
removed. The following is our main result. 

Theorem3. ForsuchaYoungdiagram Y thats(Y) = (K; Y(O), Y '")  withn = lY(o)l+lY(lll,  
we have 

where the summation runs over all Young diagrams Z(') of size n,  the Young diagram 2 
corresponds to (K; $, 2")) and Y(O)' denotes the transpose of Y(O). We also denote by LR 
the Littlewood-Richardson coefficient. 

The proof of this theorem is performed by analysing the Schur functions, apart from 
the affine Lie algebra AY). Details will be published elsewhere. 
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